Finite element method with the total stress variable for Biot's consolidation model

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PREDICTION OF STATIC SOFTENING OF MICROALLOYED STEEL BY THE INTEGRATION OF FINITE ELEMENT MODEL WITH PHYSICALLY BASED STATE VARIABLE MODEL

  Abstract   Recovery and recrystallization phenomena and effects of microalloying elements on these phenomena are of great importance in designing thermomechanical processes of microalloyed steels. Thus, understanding and modeling of microstructure evolution during hot deformation leads to optimize the processing conditions and to improve the product properties.   In this study, finite element...

متن کامل

A nonconforming finite element method for the Biot's consolidation model in poroelasticity

A stable finite element scheme that avoids pressure oscillations for a three-field Biot’s model in poroelasticity is considered. The involved variables are the displacements, fluid flux (Darcy velocity), and the pore pressure, and they are discretized by using the lowest possible approximation order: Crouzeix-Raviart finite elements for the displacements, lowest order Raviart-Thomas-Nédélec ele...

متن کامل

Robust finite element methods for Biot’s consolidation model

We propose new locking-free finite element methods for Biot’s consolidation model by coupling nonconforming and mixed finite elements. We show a priori error estimates of semidiscrete and fully discrete solutions. The main advantage of our method is that a uniform-in-time pressure error estimate is provided with an analytic proof. In our error analysis, we do not use Grönwall’s inequality, so t...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

A New Stress Based Approach for Nonlinear Finite Element Analysis

This article demonstrates a new approach for nonlinear finite element analysis. The methodology is very suitable and gives very accurate results in linear as well as in nonlinear range of the material behavior. Proposed methodology can be regarded as stress based finite element analysis as it is required to define the stress distribution within the structural body with structural idealization a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Methods for Partial Differential Equations

سال: 2020

ISSN: 0749-159X,1098-2426

DOI: 10.1002/num.22721